
Early Detection of DDoS Attacks 
in Software Defined Networks  

Controller 
 
 
 

By 
 
 
 

Seyed Mohammad Mousavi 
 
 
 
 
 
 

A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs 
in partial fulfillment of the requirements for the degree of  

 
 

Master of Applied Science 
 in  

Electrical and Computer Engineering 
 
 
 
 
 
 
 

Carleton University  
Ottawa, Ontario 

 
 
 
 

©2014 
Seyed Mohammad Mousavi 

 
 



 ii 

 
The undersigned recommend to  

the Faculty of Graduate and Postdoctoral Affairs 
acceptance of the thesis 

 
 

 
 

Early Detection of DDoS Attacks 
in Software Defined Networks 

Controller 
 

Submitted by 
 
 

Seyed Mohammad Mousavi 
 
 
 

in partial fulfillment of the requirements for the degree of  
Master of Applied Science in Electrical and Computer Engineering 

 
 
 
 
 
 
 
 
 

Chair, Roshdy Hafez, Department of Systems and Computer Engineering 
 
 
 
 
 
 
 

Thesis Supervisor, Prof. Marc St-Hilaire 
 
 

 
 
 

Carleton University 
May 2014 



 iii 

Abstract  
 
Software Defined Networks (SDN) is a new network architecture that provides central 

control over the network. This control works as if it is an operating system that can 

send instructions and apply changes through its interface. This operating system is 

called the controller. Although central control is the major advantage of SDN, it is 

also a single point of failure if it is made unreachable by a Distributed Denial of 

Service Attack (DDoS).  

 

Two main objectives of this study are utilizing the central control of SDN for attack 

detection and, proposing a solution that is effective and lightweight in terms of the 

resources that it uses.  

 
This research shows how DDoS attacks can exhaust controller resources and provides 

a solution to detect such attacks based on entropy variation of destination IP address. 

This method is able to detect DDoS within the first five hundred packets of the attack 

traffic.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 iv 

Acknowledgements  
 
First I thank GOD the almighty for helping me along the way giving me the strength 

to work on this research. 

 

I would like to thank Prof. Marc St-Hilaire. He was the first to introduce the topic of 

this research and he supported me with his advice, supervision and support.  

 

Lastly, I would like to thank my wife for her support and encouragement. 

 
 

 
  



 v 

Table of Contents 
Abstract ................................................................................................................................. iii 

Acknowledgements ............................................................................................................. iv 

Table of Contents ..................................................................................................................v 

List of Tables ....................................................................................................................... vii 

List of Figures ................................................................................................................... viii 

List of Appendixes ............................................................................................................... ix 

List of Acronyms ...................................................................................................................x 

Chapter 1 ................................................................................................................................ 1 

Introduction ........................................................................................................................... 1 

1.1 Problem Statement and Motivation.................................................................................... 1 

1.2 Research Objectives ............................................................................................................... 4 

1.3 Research Contributions ......................................................................................................... 4 

1.4 Thesis Organization ................................................................................................................ 5 

Chapter 2 ................................................................................................................................ 6 

Background and Related Work ........................................................................................ 6 

2.1 Software Defined Networks .................................................................................................. 6 

2.2 Openflow Protocol .................................................................................................................. 7 

2.3 Openflow Specifications ........................................................................................................ 8 
2.3.1 Openflow Switch ........................................................................................................................... 8 
2.3.2 Secure Channel ........................................................................................................................... 11 

2.4 Distributed Denial of Service Attack and its Mitigation ............................................. 12 
2.4.1 Types of DDoS Attacks............................................................................................................ 12 
2.4.2 Anomaly Detection for DDoS Mitigation .......................................................................... 15 
2.4.3 Types of Anomaly Detection Techniques .......................................................................... 15 

2.5 Effect of DDoS on Openflow Controller .......................................................................... 17 
2.5.1 Openflow Controller Performance ........................................................................................ 18 
2.5.2 Openflow Controller for the Cloud ...................................................................................... 19 
2.5.3 DDoS Mitigation in Openflow Networks ........................................................................... 19 

2.6 Entropy for DDoS Detection .............................................................................................. 24 

2.7 Concluding Remarks ............................................................................................................ 25 

Chapter 3 .............................................................................................................................. 26 

Early Detection of DDoS Using Entropy ...................................................................... 26 

3.1 Introduction ............................................................................................................................ 26 

3.2 A Measure of Randomness ................................................................................................. 26 
3.2.1 Why Entropy?.............................................................................................................................. 27 

3.3 Short-term Statistics for Early Detection ........................................................................ 28 

3.4 Early Detection in Openflow Controller ......................................................................... 31 

3.5 Comparison of Different Detection Methods to SDN Entropy .................................. 36 



 vi 

3.6 Concluding Remarks ............................................................................................................ 37 

Chapter 4 .............................................................................................................................. 39 

Simulation and Results ..................................................................................................... 39 

4.1 Controller ................................................................................................................................ 39 

4.2 Network Emulator ................................................................................................................ 39 

4.2 Packet Generation ................................................................................................................. 40 

4.3 Network Setup ....................................................................................................................... 40 

4.4 Choosing a Threshold .......................................................................................................... 42 

4.5 Test Cases ................................................................................................................................ 43 
4.5.1 Attack on One Host ................................................................................................................... 45 
4.5.2 Attack on a Subnet ..................................................................................................................... 48 

4.6 Effects of the Added Functions on Resource Usage ...................................................... 51 

4.7 Summary of the Results ....................................................................................................... 53 

Chapter 5 .............................................................................................................................. 55 

Conclusion and Future Work .......................................................................................... 55 

5.1 Conclusion .............................................................................................................................. 55 

5.2 Future work ............................................................................................................................ 56 

Bibliography ........................................................................................................................ 58 

Appendix .............................................................................................................................. 62 

 

 

 

 

 

 

 
 



 vii 

List of Tables 
 
TABLE 2.1 PACKET HEADER MATCH FIELDS........................................................................... 9 
TABLE 3.1 ENTROPY OF DIFFERENT WINDOW SIZES [33] .................................................... 28 
TABLE 3.2 WINDOW SIZE COMPARISON ................................................................................ 29 
TABLE 3.3 COMPARISON OF FIVE WINDOWS ........................................................................ 30 
TABLE 4.1 THRESHOLD VALUE CALCULATION ..................................................................... 43 
TABLE 4.2 ATTACK TRAFFIC PROFILE .................................................................................. 44 
TABLE 4.3 ENTROPIES OF TEST CASES .................................................................................. 49 
TABLE 4.4 NUMBER OF INCOMING PACKETS PER HOST IN EACH TEST CASE...................... 51 
 
 

 
  



 viii 

List of Figures 
 
FIGURE 1.1 SAMPLE ATTACK ON THE CONTROLLER ............................................................. 2 
FIGURE 2.1 SDN STRUCTURE [1] ............................................................................................. 7 
FIGURE 2.2 A SIMPLE NETWORK WITH AN OPENFLOW SWITCH ........................................... 7 
FIGURE 2.3 FLOW ENTRY PROCESS ....................................................................................... 10 
FIGURE 2.4 DDOS ATTACK COMPONENTS ............................................................................ 13 
FIGURE 2.5 ATTACK ROUTE IN SOM DDOS DETECTION [25] ............................................. 20 
FIGURE 2.6 USING OPENFLOW FOR MONITORING NETWORK SECURITY [27] ................... 22 
FIGURE 2.7 TWO CONTROLLERS FOR RESILIENCY IN OPENFLOW [31] .............................. 22 
FIGURE 2.8 EVENT BASED INTRUSION DETECTION DESIGN FOR SDN [32] ......................... 23 
FIGURE 3.1 DDOS DETECTION FLOWCHART ........................................................................ 34 
FIGURE 3.2 LISTS ADDED TO THE CONTROLLER .................................................................. 35 
FIGURE 3.3 FUNCTION TO COLLECT DESTINATION IP ADDRESS STATS .............................. 35 
FIGURE 3.4 ENTROPY COMPUTATION FUNCTION ................................................................. 36 
FIGURE 4.1 EXPERIMENT NETWORK WITH 9 SWITCHES AND 64 HOSTS ............................. 41 
FIGURE 4.2 SUDDEN INCREASE OF TRAFFIC IN DDOS .......................................................... 45 
FIGURE 4.3 25% RATE ATTACK ON ONE HOST ...................................................................... 46 
FIGURE 4.4 50% RATE ATTACK ON ONE HOST ...................................................................... 47 
FIGURE 4.5 75% RATE ATTACK ON ONE HOST ...................................................................... 47 
FIGURE 4.6 50% RATE ATTACK ON FOUR HOSTS .................................................................. 48 
FIGURE 4.7 75% RATE ATTACK ON FOUR HOSTS .................................................................. 49 
FIGURE 4.8 COMPARISON OF ENTROPY DROP, ONE HOST .................................................... 50 
FIGURE 4.9 COMPARISON OF ENTROPY DROP, FOUR HOSTS ................................................ 50 
FIGURE 4.10 CPU USAGE WITH NO DDOS DETECTION ........................................................ 52 
FIGURE 4.11 CPU USAGE WITH DDOS DETECTION .............................................................. 53 
 
 
 
  



 ix 

List of Appendixes 
 
APPENDIX A: STATISTICS COLLECTION AND ENTROPY COMPUTATION CODE ................... 62 
APPENDIX B: NORMAL TRAFFIC GENERATION CODE .......................................................... 64 
APPENDIX C: ATTACK TRAFFIC GENERATION CODE ........................................................... 66 
APPENDIX D: STARTING MININET ......................................................................................... 67 

  



 x 

List of Acronyms 
 
 

DDoS   Distributed Denial of Service  

DNS   Domain Name System 

DoS   Denial of Service 

GAU   Gaussian Classifier 

HTTP   Hypertext Transfer Protocol 

ICMP   Internet Control Message Protocol 

IP   Internet Protocol 

MLP   Multilayer Perception 

NIDS   Network Intrusion Detection System 

OVS   Open Virtual Switch 

SDN   Software Defined Networks 

SOM    Self-Organizing Maps 

TCP   Transmission Control Protocol 

TLS                       Transport Layer Security 

UDP    User Datagram Protocol 

VLAN   Virtual Local Area Network 

 



 

 

1 

Chapter 1 

Introduction 
 
This chapter will first cover the problem statement by looking at the threat of 

Distributed Denial of Service Attack (DDoS) in SDN architecture. Then, our 

motivation and the research objectives will be discussed. Finally, the contributions of 

this research are outlined followed by the thesis organization. 

 

1.1 Problem Statement and Motivation 
  

The idea of Software Defined Network architecture is a new and novel way of 

network management. In SDN, switches do not process incoming packets. They look 

for a match of the incoming packet in their forwarding tables and if there is none, it 

will be sent to the controller for processing. The controller is the operating system of 

SDN. It processes the packets and decides whether the packet will be forwarded in the 

switch or will be dropped. By applying this procedure, SDN separates the forwarding 

and processing planes.  

 

SDN architecture can be a network of several controllers each of which is connected 

to a network of switches. Each of these networks and its controller can be seen as 

slice of the network. We are focusing on each of these slices to protect it against 

DDoS. If the connection between the switches and the controller is lost, the network 

will lose its processing plane. That means packet processing is no longer done in the 

controller and by losing the controller, the SDN architecture is lost.  

 

One of the possibilities that can cause the controller to be unreachable is a DDoS 

attack. In DDoS attacks, a large number of packets are sent to a host or a group of 

hosts in a network. If the source addresses of the incoming packets are spoofed, which 

thery usually are, the switch will not find a match and has to forward the packet to the 

controller. The collection of legitimate and the DDoS spoofed packets can bind the 

resources of the controller into continuous processing that exhausts them. This will 



make the controller unreachable for the newly arrived legitimate packets and may 

bring the controller down causing the loss of the SDN architecture. Even if there is a 

backup controller, it has to face the same challenge. 

 

The main goal of this research is detecting a DDoS attack in its early stages. The term 

early depends on the network itself. Since the controller software can be run on a 

laptop or a powerful desktop, the term early would depend on the tolerance of the 

device and traffic properties. However, if the detection happens in the first few 

hundred packets, the mitigation is applied before the controller is completely 

swamped with the large number of malicious packets. Figure 1.1 shows a simple 

DDoS attack on the controller where the normal incoming packet rate is around100 

packets per second. When the attack happens, the rate rises sharply to, approximately, 

250 packets per second. The simulated DDoS attack was directed to a SDN controller 

that is connected to a network with 64 hosts and nine switches. The attack lasted for 

40 seconds and sent 500 packets with spoofed source addresses all destined for one 

host. For the purpose of this research, all packets will have spoofed IP addresses. This 

way, the switches do not have a match and all the packets are sent to the controller. 

The network operating system and its persistent performance is the center of attention 

in this work. 

 

 

 

One of the main objectives of this research is detecting the attack at the start of its 

launch. An ideal place for detection is where the blue line is shown in the Figure 1.1. 



 

 

3 

If DDoS is detected at this point, any mitigation techniques that follow, have enough 

time to secure the controller before it is overwhelmed by the attack and becomes 

unreachable.  

 

To accomplish this goal, a fast and effective method is needed that works within the 

controller. At the same time, it must be lightweight to avoid excessive processing 

power usage, specially, at the peak of an attack.  

 

Collecting statistics is one of the functions of the controller. In this study, this 

attribute is used for adding another set of statistics collection to the controller; 

destination IP addresses. In this research, we used IP address but SDN allows for any 

fields of the packet header to be collected. 

 

In our solution, randomness of the incoming packets is measured. A good measure of 

randomness is entropy. Entropy measures the probability of an event happening with 

respect to the total number of events. For instance, in a network of 64 hosts, all hosts 

should have a reasonably close probability of receiving new incoming packets. This 

will results in, reasonably, high entropy. New packet, in the sense that there is no flow 

for it in the switch table and it has to be sent to the controller to be validated for a new 

flow. If one or a number of hosts starts to receive excessive incoming packets, the 

randomness decreases and entropy drops. This research makes use of this property of 

entropy to detect an attack at its early stages. Based on the tests that are done in this 

research, we choose a threshold for entropy and lower values will be considered as 

attacks. Being programmable is one of the major advantages of SDN. Any time the 

network configuration changes, the threshold can be adjusted. And, it can be adjusted 

while the network is running live traffic so there is no restriction. Depending on the 

network, the entropy can be of the destination IP address, VLAN tag, destination port 

or any other applicable field. If it is lower than the set threshold, it will be considered 

an attack.  

 

The solution is, partially, based on a paper on DDoS detection proposed by Oshima et 

al. [33] where a small window of 50 packets is used to calculate the entropy of 

incoming packets. The paper is not done for SDN networks but considering the 

crucial role that controller has in SDN, short-term statistics with smaller windows are 



 

 

4 

ideal for SDN. This is due to the fact that the controller only processes the new 

incoming packets not the entire traffic. The method and calculation of the entropy will 

be further examined in Chapter 3 of the thesis. 

 

1.2 Research Objectives  
 
 
In this research, we studied SDN to find possible weak points with respect to DDoS 

attacks. This study led to the controller. We found that the controller is the weak link 

in a DDoS attack scenario. With protecting the controller in mind, we studied 

different methods in DDoS detection that could be used in the controller. However, 

the structure of SDN posed its limitation on the type of the solution and the way it 

was implemented. These limitations were: 

i) Limited resources of the controller. 

ii) The need to detect the attack before the controller is out of reach due to the 

large number of malicious packets. 

The main objectives are: 

a) To Find the weak link in SDN when DDoS happens. 

b) Find a solution to detect DDoS in SDN before it overwhelms the controller. 

 

1.3 Research Contributions  
 

In this research, we were able to find the weak point of the SDN when a DDoS attack 

happens and, propose a solution that is, specifically, tailored for SDN.   

  

The main contribution of this research is to show how DDoS can bind controller 

resource into processing malicious packets and add a DDoS detection mechanism to 

SDN controller. The contributions are as follows: 

a) Show how DDoS attack can overwhelm the controller in SDN architecture. 

b) Propose a lightweight and simple DDoS detection mechanism based on 

entropy, in order to protect the controller. 

c) Implement the proposed mechanism using Mininet [39]. 

d) Show the effectiveness of the solution through extensive simulations. 

 



 

 

5 

1.4 Thesis Organization 
 
The thesis is structured in the following order: 

Chaper 2 covers an overview of SDN and its components followed by DDoS attacks 

and their detection and mitigation techniques. Later, the effects of DDoS attacks and 

their effects on the controller will be discussed. At the last parte of the chapter, 

literature related to DDoS detection and mitigation in SDN will be covered. 

 

Chapter 3 will examine the proposed solution for DDoS detection in the controller 

and compare it to other methods.  

 

Chapter 4 presents the procedure of setting the experiment and experimental results of 

the solution.  

 

Chapter 5 is the conclusion of the thesis. It presents an overview of the proposed 

method and the results obtained from simulation. Limitations of the solution and 

future work are also outlined. 

  



 

 

6 

Chapter 2 

Background and Related Work 
 
 
This chapter will first cover the background of Software Defined Networks, the 

Openflow protocol and its specification. In addition, it will cover DDoS and its 

detection techniques in non-SDN networks. Lastly, the SDN security related literature 

will be reviewed. 

 

2.1 Software Defined Networks 
 
 
Software Defined Network is a different way of looking at networks. The main 

purpose is greater control over network assets. In current production networks, both 

control and forwarding actions are configured in the hardware by vendors, and they 

are, mostly, proprietary software. The SDN architecture separates control plane and 

forwarding plane and allows network admins to take over the control plane [1]. This 

separation is done by restructuring the network so the switch will receive instructions 

for forwarding instead of using its resources for processing the incoming packets. The 

switch will contain tables with flows that instruct forwarding. Openflow is the 

protocol that orchestrates the SDN architecture. This architecture consists of 

Openflow enabled switches, a controller and a secure channel between the controller 

and switches. Figure 2.1 shows different layers of SDN structure. The application 

layer will have a single view of the network through the control layer and the whole 

system looks like one logical switch. The control layer is where the controller 

abstracts the network infrastructure from the application layer. By using the control 

layer, any configurations and modifications can be done in real-time. In the 

infrastructure layer, there is no need for each device to learn different protocols and 

the only task left is forwarding. The Open Networking Foundation is the main 

organization that promotes the adoption of SDN, works with several vendors, and has 

different groups that are working on Openflow specification [1]. 

 
 



2.2 Openflow Protocol
 

The Openflow protocol can be considered as the workhorse of SDN. It manages the 

switches in the network and allows an external entity like the controller to manipulate 

the flow of packets through the network. Openflow was designed as a tool focused on 

network research [2]. 

 

However, in recent years, several vendors started to offer their Openflow-enabled 

switches [3]. All switches have tables showing the ingress and egress paths of a 

packet for that switch. Openflow makes use of this property and makes these tables 

accessible by the controller. An Openflow switch will receive its flow table entries 

and deletion from the controller through a secure channel. A simple network is shown 

in Figure 2.2.  

 

 

…

…  …
 

 



 

 

8 

When a new packet arrives to an Openflow switch, it will look into the flow table to 

find a match. If there is no match in the table, the packet will be sent to the controller. 

The controller processes the packet and marks the packet with an action like: 

x Add a new flow for similar incoming packets 

x Drop similar packets 

x Tag with a queue ID 

 

2.3 Openflow Specifications 
 
 
Lookup, matching, forwarding and requesting action from the controller are all done 

based on the Openflow specification that is published by the Open Networking 

Foundation. In this work, version 1.0 [1] has been used. Version 1.0 was the first set 

suitable for production networks. From time to time, version 1.3 specifications will be 

referenced for the new features. This section will cover the main areas of the 

specifications related to the topic of this research without dwelling in too many 

details. 

 

2.3.1 Openflow Switch 
 
 
An Openflow switch consists of a flow table or a group of them and a secure channel 

to the controller. Each table has a match field, counters, and a set of instructions for 

every entry. The matching process in the switch covers different fields of the packets' 

header. Table 2.1 shows the fields that a switch can use to find a match in its tables. In 

the table, there is a metadata field that is defined (second row in Table 2.1) as a 

maskable register to carry information from one table to the other when there is more 

than one table. It is a mean to carry header information from one table to the other. 

Often switches have multiple tables that are pipelined. The packet will move from one 

table to the other for a match and carry the metadata. If a match is found, the metadata 

tag will be updated accordingly.  

 

Any packets entering the switch will be checked against all existing flows in the 

tables. If a match is found, the action assigned to that entry is applied and the counter 



 

 

9 

for the entry will be updated. Counters cover a number of components in the switch 

like counters per flow entry, per table, per port, per queue and other areas.  

For instance, duration refers to the amount of time a flow spends in the table. The 

counters are all wrap around with no overflow. The controller can and will poll some 

of these counters for different reasons. It is worth mentioning that not all counters will 

be used because controllers are developed or configured to match the needs of the 

vendor. In version 1.3 counters can be disabled.  

 

If a match is not found, the packet will be sent to the controller. In version 1.3 of the 

specifications, if there is no field that can be matched, the packet will be dropped. 

Since its header does not have any of the field mentioned in Table 2.1, it will be 

considered an invalid or illegal packet. Our solution works with IP address which 

exists in the table. 
 

                 Table 2.1 Packet header match fields  

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Header Field 

Ingress Port 
Metadata 
Ether src 
Ether dst 
Ether type 
VLAN id 
VLAN priority 
MPLS label  
MPLS traffic class 
IPv4 src 
IPv4 dst 
IPv4 proto / ARP opcode 
IPv4 ToS bits 
TCP / UDP/ SCTP src port 
ICMP Type 

TCP / UDP / SCTP dst  
ICMP code 



New packets can be sent as a whole to the controller or the switch can buffer the 

payload and send only the header. The latter is the default mode. 

 

When a packet is sent to the controller, it will be encapsulated and marked as 

OFPT_PACKET_IN message. We will refer to it as Packet_In. Considering the 

number of switches, time of day, length of packet, priority and other factors, the 

controller has to process these packets and send a response with an action to deal with 

that packet and the packets coming after from the same source. This is the point 

where the processing will be completely handled by the controller and the switch will 

only cover the forwarding.  

 

There is a set of actions that the controller will send to the switch; forward, drop, push 

in a queue, quality of service and modifying a field, i.e., modifying VLAN tag, MAC 

address or IP address. The main actions, also called required actions, are forward and 

drop while queuing and modify fields are optional. The action is set for the packet in 

the controller and then sent back to the switch through Packet_Out  message.  

 

 

 

            

 

Yes 

 

    

 

    No 

     Packet_Out 

  

Packet_In 

 

 

Y

 



 

 

11 

 

Figure 2.3 shows the process of flow entry. If a packet is marked with drop action, a 

flow entry will be added. Any packet matching that flow will be dropped. If a flow 

does not receive packets, the flow entry will time out and it will be removed from the 

table after some time. 

 

2.3.2 Secure Channel 
 
 
A brief look at the specification of Openflow shows the single point where the 

forwarding plane and control plane are connected. It is the secure channel between the 

controller and the switch. If the connection to the controller is lost, a pure Openflow 

switch will not be able to deal with unknown incoming packets.  

 

The secure channel is the lifeline of all Openflow switches in SDN. It is a TLS or 

TCP connection established between the controller and the switch. If the connection is 

lost, the switch will try to connect to a backup controller if there is one. This is the 

“fail  secure  mode”  and  all  packets  to  the  controller  will  be  dropped. 

 

In an Openflow switch, all new packets will be processed in the switch and will not be 

sent to the controller. If the switch is capable of working both in SDN and in none 

SDN then, it is called Hybrid switch. In this case, the switch will not follow the 

Openflow protocol and the network loses its SDN architecture. 

 

The Openflow specification shows that without a controller in the network, we are 

dealing with a non-SDN network with no central control or separation of forwarding 

and control plane. This section shows the importance of detecting any threat that can 

make the controller unreachable.  

 

 

 
 



 

 

12 

2.4 Distributed Denial of Service Attack and its Mitigation 
 
 
The Distributed Denial of Service (DDoS) attack is a well-known malicious attempt 

to exhaust the resources of a computer or a network of computers by sending heavy 

traffic to them [4]. The two main goals of the attacker are: 

i) Bandwidth depletion. 

ii) Resource exhaustion [5].  

 

DDoS attack starts from an attacker planting a code in compromised PCs which are 

referred to as Botnet. At the time of the attack, these codes are run and a stream of 

traffic is directed towards the victim. A more sophisticated attack uses a thin layer of 

compromised PCs called handler to control a larger number of PCs called zombie 

hosts. The zombie hosts are responsible for generating the attack traffic [5]. Using 

botnets makes the attack more concentrated and keeps the perpetrator hidden behind 

the scene.  

 

DDoS is one of the most common methods of overloading and disrupting service in a 

network. Each day, hackers launch more than 7000 such attacks and, statistics show 

that in the first quarter of 2013 average attack bandwidth reached 48.25 Gbps which is 

718% higher than the last quarter of 2012 [6]. From May 2013 to Sep 2013, United 

States and China have suffered significant daily attacks. Google’s  Digital  Attack  Map,  

captures these attacks in its website [7]. Not all attacks can be detected or documented 

but looking at the numbers, it is an imminent danger for every network. Figure 2.4 

shows a simple example of DDoS Attack route.  

 

2.4.1 Types of DDoS Attacks 
 
 
Launching any attack requires an access to machines in the subnet of the victim to be 

used as zombies. Hackers use scanning to find vulnerable computers in the network. 

Scanning can be random, based on a hit list, local subnet scanning or based on an 

algorithm designed by the hacker [8].  

  

 



 

                                                                                                                                                                    

      

The attacks can be categorized as application, host, resource, network and 

infrastructure attacks [8].  

1. Application: targeting an application on a host to deny legitimate use.  

2. Host: making a host unreachable. 

3. Resource: overwhelming a server to keep it bound to the continuous stream of 

fake requests. 

4. Network: sending a large volume of traffic to a network to exhaust the 

bandwidth. 

5. Infrastructure: simultaneously targeting a domain name server in different places.  

 

A few types of DDoS have been very frequent in recent years. The pattern of attacks 

shows that hacker have been using certain types of methods for launching attacks [6] 

[7]. Some of these methods will be looked at next. 

 

Goolge and Arbor networks have dedicated a website that follows the attacks and 

collects statistics from all over the world [7]. The statistics show the type of attacks, 

duration of attacks, bandwidth used, mostly used source and destination ports, origin 

of attack and the victim’s country. The following paragraphs describe different types 

of attack.  

 

…   …  …   



 

 

14 

1. UDP Flood is a type of attack that sends a large number of packets to 

random ports in the victim's machine causing the machine to look for 

applications on these ports. The machine has to send Destination Unreachable 

packets in response for each incoming packet. As the number of incoming 

packets increases, the delay increases and, eventually, the machine will be 

inaccessible. 

 

2.  SYN Flood is an attack using TCP connection initiation for targeting the 

victim's machine. Several SYN packets are sent to the victim but no ACK is 

returned to the victim causing the resources to be used up waiting for 

acknowledgement from the attacker. TCP Flood was the highest detected 

attack up to mid 2013 with 38.7% of perpetrated attacks [9]. 

 
3.  DNS Reflection attack is sending spoofed IPs and asking for a response 

that is much larger than the request and directing it to the victim. The attacker 

changes the source IP address to the victim's IP and causes a heavy traffic to 

be directed to the victim. Spoofing packets is a common practice for DDoS 

attackers. 

 

4.  HTTP Flood consists in sending a huge number of requests to a server and 

overwhelming it to the point where it cannot respond to legitimate requests. 

This was the second highest type of attack with 37.2% [9]. 

 

5.  ICMP Flood is another type of attack that exhausts the resources of the 

victim by sending a very large number of ICMP pings (echo request), which 

keeps the server bound in sending responses (echo replies). 

 

The common factor in all of these attacks is pushing heavy traffic into the victim's 

network and exhausting its resources. The detection and mitigation of these heavy 

flows in current conventional networks will contribute to a better understanding of 

their effect on the SDN architecture.  

 

 



 

 

15 

2.4.2 Anomaly Detection for DDoS Mitigation 
 
 
The common factor in different types of DDoS attack is the abnormal traffic sent to 

the victim. In normal circumstances, there is a pattern in the network activity and an 

accepted rate of bandwidth consumption. If there is a sudden increase in traffic, delay, 

CPU utilization, or sudden drop in performance of any of the network assets, this, 

often, will be considered abnormal. Any DDoS detection will be looking for such 

abnormalities in the network. In general, anomalies are related to the nature of data in 

the network [10]. The attack can be directed to the network layer to cause a bottleneck 

or an application layer type causing CPU resources exhaustion. Understanding the 

type of data and its characteristics in the network is the first step to detecting 

anomalies. These characteristics can be packet header information, delay, packet size, 

protocol, etc. For instance, in a server that responds to TCP SYN requests, attacks are, 

most likely, TCP SYN request flooding. And, this is where anomaly detection is 

likely to occur. In fact, the characteristics of the network dictate the type of intrusion. 

If a network is susceptible to a certain type of threat, then detection and mitigation of 

the threat has to be matched to it. 

 

2.4.3 Types of Anomaly Detection Techniques 
 
 
In IP networks, there is a certain bandwidth and certain processing power for carrying 

traffic. When some attributes of the network are subjected to statistical analysis, for 

each attribute a pattern will appear. The longer the time, the more reliable is the 

pattern. However, this is only true if the network has a steady traffic all the time. If 

there are variations that are accepted as normal traffic, in the long run, the statistics 

will stabilize and cannot be considered completely reliable. 

 

Data collection, filtering and processing for anomaly detection are approached by a 

variety of techniques. Statistical analyses and machine learning are two of the 

common methods of anomaly detection.  

 

  

 



 

 

16 

1. Statistical analyses, like Entropy and Chi-Square techniques, have been 

suggested for detecting change in network traffic [11].  

 

Entropy represents packet headers as independent information symbols with 

unique probability of occurrence. It is a common method for DDoS detection 

[12] [13] [14]. By selecting a window of some number, 10,000 for instance, 

and moving the window forward, a pattern will emerge with probabilities for 

each type of packet header. Drastic changes in the bins of each header that 

deviates from the average bin limits will alert the system of anomalies. This 

method will be explored further in the next chapter to examine its potential use 

in SDN. 

 

If a certain type of intrusion is expected and the type of packet header is 

known, then Chi-Square is a better model. For instance, if TCP SYN flood is 

the expected type of attack, then sampling bin of data and measuring the 

number of TCP SYN headers will show a pattern of the average number of 

such headers. Any deviation beyond the recognized limits is assumed 

abnormal.  

 

Equation 2.1 shows Chi-Square equation. Ni is the number of packets for one 

sample and ni  is the expected number of packets in normal circumstance. The 

value of targeted packets per bin is updated as times passes and more samples 

are taken.  

 

                               
¦
 

�
 

B

i i

ii

n
nNX

1

2
2 )(

                                   
(2.1)

    

                            
 

2. Machine learning and cognitive detection is another method used for 

defending networks against intrusion. Instead of setting up a fixed filter an 

algorithm is trained to constantly update its filtering criteria based on the 

events of the network.  

 

 



 

 

17 

An example of such system is neural networks [15]. Neural networks consist 

of several nodes working in parallel to process data. They work like human 

brain. When they are trained or given a large amount of information, the 

collective knowledge of neurons or nodes develop a pattern for the processing 

of similar data. Three main layers of neural networks are input, output and 

hidden layers in the middle to process the input data. As time passes and more 

data is processed, the nodes are learning more and a clearer pattern emerges.  

 

An algorithm is the driving force behind the decision making of these 

networks. Some common algorithms in network intrusion and anomaly 

detection are Multilayer Perceptron (MLP), Gaussian Classifier (GAU), K-

means Clustering (K-M) and Markov model [16] [17] [18].  

 

In the first chapter, it was mentioned that entropy is the method that is used in this 

research for implementing a detection method in Openflow controller. Before looking 

into the entropy literature, the effect of DDoS on SDN and its detection techniques 

will be reviewed. Later on, entropy detection literature will be discussed.  

  

In the previous sections, the nature of attack, its types and mitigation techniques were 

briefly covered. A more thorough investigation is beyond the scope of this research as 

it is more focused on the affect of DDoS on SDN. As a result, the next section will 

focus on the DDoS in SDN. 

 

Being an ever present danger, DDoS attacks are a real threat to any network, 

especially, SDN. Being a new structure, and in the process of maturing, there is an 

opportunity for discovering weak points of the SDN for a better defense against such 

attacks. 

 

2.5 Effect of DDoS on Openflow Controller 
 
 
If Openflow is the protocol that is, currently, used for SDN structure, then, the 

controller is the brain or the operating system of SDN. It can modify network assets 

and dictate new rules to switches in real-time. However, SDN lifeline to the controller 



 

 

18 

is the secure channel. Once the secure channel is disconnected, the SDN structure 

loses its operating system and, in the best case, it has hybrid switches that can fall 

back to the normal operation mode (i.e. switches doing the processing and 

forwarding). This single point of failure is the where a DDoS attack can really hurt 

SDN. The other effect of DDoS attack is the filling of switch flow tables. For every 

incoming packet, the controller will add a new flow to the table. With a high volume 

of traffic coming, soon the flow tables will be filled with fake flows.  

 

One serious scenario of DDoS that can directly affect the controller is swamping the 

controller with Packet_In events.  Any new packets that do not have a match in the 

flow table will be sent to the controller for processing. Most DDoS attacks use 

spoofed source address, which translates into new incoming packet at the switch. This 

part is considered one of the advantages of SDN where the control plane is separated 

and manageable at the controller. It is also the main disadvantage when the number of 

new incoming packets is greater than the secure channel’s bandwidth and the 

controller’s processing power.  

 

2.5.1 Openflow Controller Performance 
 
 
Jarschel et al. [19] have shown that performance of the Openflow architecture is 

directly related to the processing power of the controller. As the number of new flows 

increases, the wait time and overall delay in the system rises. One reason for that is 

the buffering that happens in both the switch and the controller. In the event of any 

threats, these buffers are a death trap for the whole system. Packet_In events in large 

numbers fill up the queues. If the incoming events are spoofed packets, they will 

paralyze the network by limiting the access to legitimate flows.  

 

Cai et al. [20] propose a solution for better performance by parallelism. This method 

makes use of the multicore feature of new CPUs. Recent CPUs have two, four or 

more cores. They are called dual or quad core processors. This method utilizes each 

core of the CPU for processing new packets. The performance improvement is 

achieved by using a threading program that they called Maestro. When a packet 



 

 

19 

arrives for processing, Maestro will pull the state of each core and forwards the packet 

to the idle core. This will reduce the wait time in the buffer for incoming packets.  

 

 2.5.2 Openflow Controller for the Cloud  

  
Openflow has been a research topic for cloud networks and datacenters. Some areas 

of interest are network virtualization based on Openflow [21], resource control [22] 

and improving data center scalability using Openflow [23]. 

 

Cloud networks often deal with geographically distributed hosts. Applying SDN 

architecture to this type of networking will require a number of controllers to deal 

with scalability issue. 

 

Bifulco et al. [24] show an example of multi-controller network where a mobile node 

travels from one network to another and its local network IP address is translated to a 

fixed IP in the controller. The local IP is called locator and fixed the IP is called 

identifier. When a connection to the node is requested, its fixed IP address is sent to 

the switch connecting to the local network. The Fixed IP address is an identifier of the 

mobile node and the switch can do the translation through a flow in its table. 

Controllers share the information and fill up switch tables of the network where the 

mobile node is connected. In this architecture, the mobile node is always known by its 

fixed IP address.  

 

2.5.3 DDoS Mitigation in Openflow Networks 
 
 
Production networks have been studied for a long time and the types of threats to 

them are mostly known. SDN however, is a new architecture and there are not many 

papers discussing the topic. Existing papers look at DDoS and apply the existing 

solutions to SDN. This means treating SDN as a normal production network where 

the role of the controller is ignored. In SDN, the switches have no control over 

incoming packets and they do not spend any time processing them. This also means, 

in an attack, the entity affected first and most is the controller. 



 

 

20 

Braga et al. [25], use Self-organizing Maps (SOM) [26] machine learning technique 

for DDoS detection.  In this method, SOM is trained by collecting the flow statistics 

from Openflow switches. The parameters that are checked for training SOM are 

average packet per flow, average bytes per flow, average of duration per flow, 

percentage of pair flows (i.e. two flows one in switch A and the other in switch B, 

flow A destination is input port of Flow B), growth of single flow, and growth of 

single ports. The SOM will improve the statistics of its vectors as time passes and 

more statistics are gathered. 

 

A look at Figure 2.5 shows the path of a DDoS attack to a host target and nothing 

goes through the controller. The red line shows the path of attack and NOX [27] is the 

controller. In a DDoS attack, the packets are always spoofed or coming from several 

zombie nodes. Hence, the packets have to go through the controller to get access to 

the target through a flow in the switch table. This case was not covered in this paper. 

 
                               

 

Other related work in security has been the use of SDN architecture for intrusion 

detection in cloud networks. Shin et al. [28] use Openflow as a flow regulation tool to 

monitor traffic in the cloud. The main idea is reconfiguring the flow of packets by 

using the Openflow protocol so it takes a path where a Network Intrusion Detection 

System (NIDS) is installed. By deploying the SDN architecture, there is no need to 

relocate and reinstall NIDS devices. Openflow will process the packets and add flow 

rules to routers and switches to go through a monitored path. Few algorithms are 

offered by the paper to find the shortest path for a secure route and each one is 

categorized by the time it takes for the controller to find it.  

                 Figure 2.5 Attack route in SOM DDoS detection [25] 



 

 

21 

In this paper, the SDN controller computes the shortest path to a monitored link in the 

network and it is not involved in the detection process. A look at Figure 2.6 shows the 

structure of proposed detection system. In the figure, device and policy manager 

module contains a list of devices and the security policy of each device. The routing 

rule generator module first discovers the topology of the network and then collects 

status and cost information of the network to send it to the controller, NOX in this 

figure. The flow rule enforcer module is the controller that adds flows in the routers 

and switches. Network operating system is Openflow and its controller combined. 

 

Xing et al. [29] propose adding Openflow to SNORT [30], a common intrusion 

detection tool for cloud, to reconfigure the network when an attack is detected by 

SNORT.  

 

Although above examples of cloud intrusion detection were not applied to detect 

DDoS on the SDN architecture itself, they show the potential of SDN for intrusion 

detection and mitigation in a complex network like a cloud. The main purpose of this 

research is to find a way to protect the structure of SDN, in particular, the controller.  

 

Fonseca et al. [31] discus the possibility of losing the controller and identify the need 

for a backup one. The paper proposes a second controller that runs in parallel to the 

current running controller. If the switches lose connection to the controller, they will 

look for the second controller, which is added to the configuration of the switch. One 

of the mentioned scenarios is losing the controller in a DDoS attack. The solution for 

such situation is to use a machine learning solution like SOM in [25] for attack 

mitigation while recovery is in process. Figure 2.7 shows running two controllers in 

parallel. The first controller will continuously send status updates to the backup 

controller announcing that it is alive. If the first controller goes to an unknown state or 

becomes unreachable, the second controller will take control and starts running the 

network normally.  

  



 

 

22 

 
 

 

 

 

 
 

 

 

 

       Figure 2.7 Two controllers for resiliency in Openflow [31] 

       Figure 2.6 Using Openflow for Monitoring network security [27] 



 

 

23 

Hu et al. [32] propose an intrusion detection system that works on top of Openflow 

and SDN. Figure 2.8 shows the structure of such system. The event processing 

software is a hyper controller that receives events for sub-controllers and processes 

them for possible attacks. The event bus in the figure is the link between sub-

controllers and the event processor. The method is in the research phase and there are 

no experimental results.   

   

In [28], SDN was used to discover shortest path and there was no mention of the 

effect of that attack on the controller itself. In [31], if an attack happens, and the 

primary controller is unreachable, the attack continues and the backup controller has 

to face the same problem. The event-based system employs a hyper controller to do 

the packet processing for the sub-controller. It seems that the events are processed 

twice in the system. Once when they arrive at the sub-controller and then when they 

are sent to the event processing engine. This overhead of processing can be removed 

by applying detection technique at the sub-controller level and mitigation at the hyper 

controller level.  

 
To the best of our knowledge, there are not many papers discussing the security of 

SDN and Openflow in the event of an attack. This might be due to the fact that the 

structure is new and not widely used. The papers that are presented here are the most 

directly related papers. In fact, to the best of our knowledge, there is no paper 

addressing the issue of losing the controller in SDN and its solution. 

 
 Figure 2.8 Event based intrusion detection design for SDN [32] 



 

 

24 

2.6 Entropy for DDoS Detection 
 

Entropy is the method used in this research to detect DDoS attacks in SDN. A look at 

the used methods in non-SDN networks is necessary before introducing it in SDN. 

Since there is no research in using this method in SDN, we have to rely on what is 

done in non-SDN research. 

 

There are two essential components to DDoS detection using entropy; window size 

and a threshold. Window size is either based on a time period or number of packets. 

Entropy is calculated within this window to measure uncertainty in the coming 

packets. To detect an attack, a threshold is needed. If the calculated entropy passes a 

threshold or is below it, depending on the scheme, an attack is detected. 

 

Qin et al. [12] propose a method with a window of 0.1 seconds and three levels of 

threshold. This method is concerned with avoiding false positive and false negatives 

in the network. However, as the authors themselves mention, the method is time 

consuming and uses more resources.   

 

Ra et al. [13] propose a faster way of computing entropy by basing the calculation on 

both packet type and the volume of packets in the network. This method also uses a 

time period window. For the threshold, the authors ran several datasets to find a 

suitable threshold and it is a multiple of standard deviation of entropy values. In this 

method, the false negatives are higher than other methods and false positives are 

lower. No percentage of accuracy is indicated. There is also no mention of resources 

used for fast computation.   

  

Entropy has been used in different ways to detect DDoS attacks in the network but, to 

the best of our knowledge, it has not been used in SDN. 

   

In SDN, when passing packets to the controller, the limitation of available resources 

and the quick detection of attacks are key features of any detection scheme. In this 

research, we will apply entropy for DDoS detection with the above limitation of the 

controller in mind. 



 

 

25 

2.7 Concluding Remarks 
 
 
In this chapter, it was shown that the operating system of Openflow networks is the 

controller and losing it means losing the advantages of broad control with SDN.   

 

The high frequency of DDoS occurrence will pose a challenge to SDN and it can be 

focused on just the controller bringing down the operating system. By examining 

DDoS attack and its mitigation, two main elements of detection stand out: 

1. Packet header processing 

2.  Collecting statistics 

 

At the same time, when looking at the tasks that the controller performs, we see two 

similar but very important elements: 

1.  Packet header processing and assigning actions 

2.  Collecting statistics from the switches 

 

In [28] and [29], Openflow abilities were used for detecting DDoS attack on cloud 

networks. It seems that Openflow has all the elements that are needed for a successful 

detection. The next chapter will focus on utilizing these elements for an early 

detection of DDoS attacks within a SDN environment. 

 

 

 

 

 

 

 

 

 

 

  



 

 

26 

Chapter 3 

Early Detection of DDoS Using Entropy 
 

3.1 Introduction 
 
In this chapter, the proposed method for early detection will be explained. Due to the 

limited resources of the controller, an early detection should be within the first few 

hundred packets of the attack. First, entropy, its formulas and computation will be 

discussed. Then, early detection will be examined, followed by our proposed 

detection method. Finally, the solution will be compared to other DDoS detection 

schemes. 

 

3.2 A Measure of Randomness 
 
In Chapter 2, we showed the use of entropy for DDoS detection and looked at its main 

components. Here, we will look at the formulation and computation. The main reason 

for choosing entropy is its ability to measure randomness in a network. The higher the 

randomness the higher is the entropy and vice versa. 

 

Let W be a set of data with n elements and x is an event in the set. Then, the 

probability of x happening in W is shown in Equation 3.2. To measure the entropy, 

referred to as H, we calculate the probability of all elements in the set and sum that as 

shown in Equation 3.3.  

 

                                     W ={x1, x2, x3,..., xn}                                (3.1) 

 

                                     pi =
xi
n

                                                           (3.2) 

 

                                      ¦
 

� 
n

i
ii ppH

1
log                                          (3.3) 

 



 

 

27 

The entropy will be at its maximum if all elements have equal probabilities. If an 

element appears more than others, the entropy will be lower. The size of W is called 

the window size. If there is a continuous stream of incoming data, in our case the data 

is packet header, it will be divided into equal sets that are called windows. In the 

window, each element and its occurrence are counted. 

 

For instance, if the window has 64 elements and, all elements appear only once, the 

entropy will be 1.80. If one element appears 10 times, the entropy will be 1.64. This 

property of entropy will be used for calculating the randomness in the SDN controller. 

 

3.2.1 Why Entropy? 
 

When packets arrive at the controller, the source address is always new. This is the 

reason they come to the controller. There has not been an instance of them in the table 

of the switch so they are passed on to the controller. It was shown in Chapter 2 that 

for every new incoming connection, the controller will install a flow in the switch so 

that the rest of the incoming packets will be directed to the destination without further 

processing. Hence, any time a packet is seen in the controller, it is new. 

 

The other known fact about the new packets coming to the controller is that the 

destination host is in the network of the controller. The network consists of the 

switches and hosts that are connected to it. Knowing the packet is new and the 

destination is in the network, the level of randomness can be quantified by calculating 

the entropy based on a window size. The window size is the number of incoming new 

packets that are used for calculating entropy.  In this case, maximum entropy occurs 

when each packet is destined to exactly one host.  Minimum entropy occurs when all 

the packets in a window are destined for a single host. 

 

Being able to quantify randomness and have minimum and maximum based on 

entropy makes it a suitable method for DDoS detection is SDN. Using entropy, it is 

possible to see its value drop when a large number of packets are attacking one host 

or a subnet of hosts.  

 



 

 

28 

In Chapter 2, we saw that machine learning methods needed extensive training to be 

able to detect anomalies. Also intrusion detection devices for DDoS detection had to 

be installed on different links in the network. Entropy does not have these limitations. 

3.3 Short-term Statistics for Early Detection 
 

Before discussing our solution, we will look at an entropy-based DDoS detection 

method that is used in a non-SDN network.  

 

Oshima et al. [33] propose a short-term statistics detection method based on entropy 

computation. “Short-term”  here  refers   to  calculating  entropy   in  small  size  windows.  

The study proposes a window size of 50 packets for gathering statistics. In this 

method, different window sizes where tested for optimal entropy measurement. Table 

3.1 shows the results of the tests for different window sizes.   

 

 

 
In Table 3.1, W is the window size, HN  is the entropy in normal condition, HA  is 

entropy during an attack, SN and SA  are the standard deviation of entropy for normal 

and attack traffic conditions respectively. z is the test of significance. More precisely, 

it is a test of validity for the hypothesis between two averages of different 

populations. When it is higher than 1.64, the hypothesis is valid. In Table 3.1, it can 

be seen that for a window size of 50, z is 1.7. The value can be computed using 

Equation 3.4. 

                                  
rn

HH
z

rn

AN

// 22 VV �

�
                               (3.4) 

σn and  σr  are  the same as and . n is the population of normal traffic packets 

(value of n is not given) and r is set to 25. To test the hypothesis, a one-sided test of 

SN SA

Table 3.1 Entropy of different window sizes [33] 



 

 

29 

significance with 5% confidence interval was used. The formula for the one-sided test 

is shown in Equation 3.5 where x  is the mean of the population, 0P is the sample 

mean, σ is the standard deviation and n is the sample count.  

                                           
n

x
/

0

V
P�                                             (3.5) 

 

Instead of this test, we chose an experimental Threshold. In the previous section, we 

showed that the maximum and minimum values of entropy can be deterministic in the 

controller. This will give us the freedom to choose a suitable threshold by simulating 

the attacks on the controller. We run several attacks to choose a threshold within the 

difference between HN  and HA . If the entropy value is below the threshold, an attack 

has happened and no attack otherwise. 

 

We have chosen the window size to be 50 for this research. The main reason for 

choosing 50 is the limited number of incoming new connection to each host in the 

network. In SDN, once a connection is established, the packets will not pass through 

the controller unless there is a new request. The other reason is the fact that a limited 

number of switches and hosts can be connected to each controller. The third reason 

for choosing this size is the computation that is done for each window. A list of 50 

values can be computed much faster than 500 and, an attack in a 50-packet window is 

detected earlier. We also tested the entropy with three other window sizes and 

measured the CPU and memory usage. Table 3.2 shows that there is no difference in 

memory usage but CPU usage increases with window size.  

 
                               Table 3.2 Window size comparison 

Window size CPU1/CPU2 Memory usage 

20 60% / 67% 1.2 GB 

50 62% / 67% 1.2 GB 

100 64% / 68% 1.2 GB 

500 65% / 68% 1.2 GB 

 

Table 3.3 shows the difference in entropy and the number of attack packets from each 

window size. HN  is the normal traffic entropy, HA  is the attack traffic entropy and 



 

 

30 

HN  - HA is the difference. Last column shows the number of malicious packets when 

the attack traffic is 25% of all incoming packets. This is the lowest attack traffic rate 

that our method can detect with accuracy. 

In a window of size 20, the difference of entropies is less than 10% making it difficult 

to choose a threshold. With only five packets, probabilities of false positives will 

increases. On the other side, window of 500 does not offer a better difference of 

entropies and takes a much longer time than a window of 50 to compute entropy. The 

difference is 0.19 for 500 packet window size which is 11% drop in normal traffic 

entropy. The difference in the window size of 50 is 0.12 which 10% drop in normal 

traffic entropy. Difference of 1% does not justify choosing a 10 times bigger window 

size. 

 

Window sized of 50 and 100 look close. Because the number of hosts in our test 

network is less than 100, we chose 50. It is very easy to change window size in the 

controller and this flexibility is the advantage of SDN.  

 
                         Table 3.3 Comparison of five windows 

Window size HN  HA  HN  - HA  HAPackets 25% 

20 1.22 1.1 0.12 5 

50 1.5 1.3 0.2 12 

100 1.6 1.4 0.2 25 

500 1.66 1.47 0.19 125 

  

Looking at Table 3.1, the entropy of attack is higher than that of normal condition. In  

[33], the entropy is based on the destination port and source IP address. It is higher 

because the attack packets have different IP source addresses and they are, most 

likely, spoofed. In normal conditions, a connection between source and destination is 

established and the packets in these types of flows have the same IP source address. 

Since these packets have a higher number in the network, the entropy of normal 

condition is lower and an attack with several new source IP addresses increases 

entropy.  However, in SDN, the packets are trying to establish a connection to the 

target by getting a flow rule in the controller. Thus, having different source IP 

addresses is a known fact that does not help in the detection of DDoS.  



 

 

31 

In SDN, the number of hosts and switches connected to the controller are known. 

Knowing the window size, the maximum entropy of the destination IP address is also 

known. It is happening when each packet is destined to exactly one host. What is left 

to be calculated is the number of packets that are targeting a specific host or a subnet. 

Hence, in our method, destination IP address is used for entropy computation and 

different that [33], where lower entropy indicates, possibly, an attack is in progress. 

 

3.4 Early Detection in Openflow Controller 
 

As it was shown before, one function of the controller is collecting statistics from all 

Openflow switches to detect inactive flows. These flows will be removed if they do 

not receive any packets for a period of time. This time period is called time-out in the 

Openflow specification and it can be set to different values. 

 

For a lightweight solution, we propose adding another set of statistics to the 

controller. In this work, it is the entropy of the destination IP address in the controller. 

The function will determine if a higher than normal rate of incoming packets destined 

to the same destination. 

 

In the previous section, the window size was set to be 50. The assumption is that the 

network has 50 or more hosts connected to it. One other component of DDoS 

detection by entropy is selecting an appropriate threshold, which will be discussed in 

the next chapter. 

 

In the new function, every 50 Packet_In messages will be parsed for their destination 

IP address and the entropy of the list will be computed. The calculated entropy, then, 

will be compared to a threshold. If the calculated entropy is less than the threshold 

and it persists for a minimum of 5 consecutive entropy periods, it will be considered 

an attack. Detection within 5 entropy periods is 250 packets in the attack, which gives 

the network and early alert of attack. We tested with values one to five consecutive 

periods and five has the lowest false negative and positive for early detection. The 

results of these tests will be shown in Chapter 4.   

 



 

 

32 

With a window of 50 packets and a network of 50 hosts or more, maximum entropy, 

HMAX  is when each of the 50 packets is equally distributed among all the hosts. When 

an attack happens, the number of packets going to the same destination host, or the 

same subnet, is much higher so it will make the target unreachable to legitimate 

traffic. This would be the main objective of the attack. The other factor in an attack is 

its flow to the target. The attack packets will be targeting a single host or a subnet. If 

the rate of attack to a host is higher than the normal traffic level, which is always the 

case, the number of packets to that particular host in a window will increase. Because 

of that, the entropy will fall with a certain percentage. If it falls below the threshold, it 

is an attack. 

 

One advantage of our method is the liberty of testing the controller with different 

attack rates to calibrate a threshold. In SDN, the controller can be connected to a 

simulator and tested then be deployed in the field to accept production network 

traffic. This property allows for the threshold to be tested before applying it. 

 

Let I be the IP addresses of all hosts connected to the network, see Equation 3.6, and 

W be the window containing new packets’  destination IP address x and their number 

of occurrence y ,Equation 3.7.  

 

                                     I ={x1, x2, x3,..., xN}                                       (3.6) 

 

                                     W ={(x1, y1), (x2, y2 ), (x3, y3),...}                  (3.7) 

 

                                     x � I                                                                  (3.8) 

 

 

 

Then the entropy will be at its maximum if each destination IP is unique, see Equation 

3.9: 

                                      1:  ��� yHWx MAX                                 (3.9) 

              

 



 

 

33 

If the above condition does not hold, then some IP addresses have appeared more than 

once. 

 

Two conditions are chosen to be the trigger for an attack in our method. One is the 

threshold and the other is the continuity of the attack. There might be glitches in the 

network that cause irregularity in normal traffic. If a link to a switch goes down or 

some hosts become temporarily unavailable, the entropy might fall and trigger a false 

positive. To avoid false positives of this type, we propose a limit for the number of 

consecutive low entropy windows. Based on that, the condition for declaring an attack 

is shown in Equation 3.10 where T is the threshold, S is an array of five windows with 

lower than T entropy. “�”  is  the  sign  of  negation. An attack happened if entropy of 

attack HA , is smaller than the threshold and, having five consecutive lower than 

threshold entropies is true. Otherwise, there is no attack: 

 

                               
¯
®

�

���
.,

,
otherwiseattack

STHattack A                           (3.10) 

 

Figure 3.1 shows the flowchart of our detection method. Packet_In step shows that a 

new packet has arrived with new source address. First, we check the destination IP 

address to see if the destination IP address has an instance in our window. If it does, 

we increase the count for that IP address. Otherwise, it will be added as a new IP 

address. In the next step, we check if we have the 50th packet. If we do, the entropy of 

the window will be computed. Lastly, the entropy is compared to the threshold. If it is 

higher than the preset threshold, we go back to step one, waiting for new packets. 

Here, the count for consecutive lower-than-threshold entropies is set to 0. This is done 

to clear the count if there was lower entropy but had not reached five.  If the entropy 

is lower than the threshold we increase the count for the consecutive lower-than-

threshold entropies. If the count is five, an attack is detected. 

 

The algorithm in Figure 3.1 is done with the addition of two function is the controller. 

The first one is called when a new Packet_In message arrives and it accepts the 

destination IP address as an argument, Figure 3.2. The second function is used to 



 

 

34 

computes the entropy, Figure 3.3. This is the only addition to the controller. Just to 

show the amount of code change in the controller the two functions are shown below. 

 

 
                Figure 3.1 DDoS detection flowchart  

 



 

 

35 

           
                      Figure 3.2 Lists added to the controller 

 

 
         Figure 3.3 Function to collect destination IP address stats 

 
 

    # Statistics Lists 
    count = 0      # Counting the number of incoming packets 
    entDic = {}    # Hash table for the IP address and its occurrence  
    ipList = []    # List of IP addresses  
    dstEnt = []    # List of entropies 

    def statcolect(self, element): 

        # This function collects IP statistics 

        l = 0 

        # Increments until we reach 50 

        self.count +=1 

        self.ipList.append(element) 

 # If the number of packets is 50, create a hash table of IP      

     # addresses and number times they show up 

        if self.count == 50: 

            for i in self.ipList: 

                l +=1 

                if i not in self.entDic: 

                    self.entDic[i] =0 

                self.entDic[i] +=1 

             

            # call entropy  

            self.entropy(self.entDic) 

       # print the hash table and clear all  

            print self.entDic 

            self.entDic = {} 

            self.ipList = [] 

            l = 0 

            self.count = 0 



 

 

36 

 
                     Figure 3.4 Entropy computation function 

 

3.5 Comparison of Different Detection Methods to SDN Entropy 
 
In [25], a machine learning method was used to learn the behavior of the network and 

based on that, decide whether an attack is in progress or not. This method is, mostly, 

used in non-SDN networks. When used in SDN networks it follows the same 

procedure and does not take into account the effect of DDoS on the controller. The 

solution has to run alongside SDN and has to be trained for a few hours before it can 

be used in the network. One other issue is the fact that SDN may reconfigure the 

network frequently. This means the Self-Organizing Maps solution has to be trained 

again for better protection. Finally, as the network expands, the neurons of the Self-

Organizing Maps have to increase resulting in expansive neurons in the network and a 

lightweight solution turns into a heavy drag for the network. Our proposed solution 

runs within the controller and can be changed to fit the requirements as needed. 

 

Shin et al. [28], propose Openflow for finding the shortest path to Network Intrusion 

Detection System devices. The solution requires the addition of NIDS devices along 

def entropy (self, lists): 

        # this function computes entropy 

        l = 50 

        elist = [] 

        for p in lists.values(): 

            c = p/l 

            elist.append(-c * math.log10(c)) 

 

        print 'Entropy = ', sum(elist) 

        self.dstEnt.append(sum(elist)) 

    # collect 80 windows and print the entropy for a graph 

        if (len(self.dstEnt)) == 80: 

            print self.dstEnt 

            self.dstEnt = {} 



 

 

37 

the links of the network to monitor traffic for suspicious activity. In our solution, we 

propose using the controller itself for the detection of any attack. Although our 

solution is not tested on the cloud, the principle remains the same. The only difference 

is that the hosts are virtual hosts and the statistics can be changed from IP address to 

VLAN tag.  

 

Like [28], Xing et al. [29] propose a DDoS detection method alongside SDN. SNORT 

is a DDoS detection tool itself and its combination with SDN is, again, using a non-

SDN tool for SDN. The main purpose of our solution is making the detection process 

transparent by embedding it in the controller.  

 

The closest solution to the one proposed in this thesis is [32]. This method adds an 

event processing module on top of the existing controllers and renames them to sub-

controllers. The event processing module is considered a hyper controller receiving 

events from the sub-controllers and processes them for possible attacks. It seems that 

the hyper controller is supposed to have the bigger picture of the network for a better 

view of the attack. This, however, is the speculation of the writer.  No algorithm is 

mentioned for the hyper controller attack detection and the solution has not been 

tested. The entropy method uses a different approach by assigning the detection task 

to each controller thus reducing the complexity.  

 

In none of above solutions the controller has been the center of attention. Being the 

driving force of SDN and the operating system, it is the most essential component in 

the structure. This work is mainly concerned with detecting DDoS threats that are 

endangering the controller which is, in part, also protecting the hosts. 

3.6 Concluding Remarks  
 

In this chapter, it was shown how an attack can alter the entropy of normal traffic and 

how examining the entropy can be used to set a threshold. This principle is used as a 

way of detecting an attack in the controller.  

 

 

 



 

 

38 

We believe this is a lightweight and effective solution for SDN architecture with one 

controller. There are four major advantages that are worth mentioning: 

 

1. Transparency: the statistics collection does not interfere with other function of 

the controller. 

 

2. Limited resource usage: the collection of the statistics and its calculation is not 

heavy and does not use a considerable amount CPU power and memory. 

 

3. Fully customizable: every parameter in the solution from window size to 

threshold and statistics fields can be quickly changed to comply with new 

requirements if needed. 

 

4. Minimal changes to the controller: the code that is added to the controller is 

minimal and has two functions.  

 

Controllers are not ready-made unchangeable equipment. They are software running 

on a machine that can be a laptop. Vendors can build the desired controller to fit their 

needs. With this solution, any controller can be easily fitted with a lightweight DDoS 

detection functionality without additional equipment like NIDS, DDoS detection 

software like SNORT or machine learning techniques like SOM.  

 

Most importantly, this solution shows the flexibility of SDN for accepting important 

functionalities like DDoS detection with small changes.  

 

In the next chapter, results of the proposed DDoS detection method with entropy will 

be examined. 

  



 

 

39 

Chapter 4  

Simulation and Results   
 
 
In this chapter, an Openflow controller will be connected to a network to form a SDN 

structure. Then, the entropy of the traffic to the controller is examined under normal 

and attack conditions. 

 

4.1 Controller  
 

The first part of our experiment is choosing a controller. There are few famous 

controllers available. The one that is used in this experiment is POX [34]. Pox is 

widely used for experiments, it is fast, lightweight and designed as a platform so a 

custom controller can be built on top of it. It is an improved version of its predecessor 

NOX [35], and both are running on Python. POX works on Linux, Mac OS and 

windows, and it has topology discovery. For completeness, three other controllers 

should be mentioned. Floodlight [36] is another widely used controller that is open-

source and written in Java. One advantage of Floodlight is facilitating application 

interface to the controller so they can run alongside it. Beacon [37] is another Java-

based controller that is open-source and has high throughput and low latency. 

OpenDaylight [38] controller is the most recent addition to Openflow controllers. It 

meant to be a common platform for all SDN users. Recently, OpenDaylight 

announced its first release: Hydrogen. All the SDN papers that are mentioned in this 

paper are using NOX. NOX is no longer in development [34], which led to the use of 

POX in this paper. 

 

4.2 Network Emulator  
 

Mininet [39] is the network emulator that is used for this experiment. It is the standard 

network emulation tool that can be used for SDN. Mininet can prototype a network on 

a laptop or PC by using kernel namespace feature. Network namespace provides 

individual processes with their own network interfaces, ARP tables and routing tables. 

Mininet makes use of this feature of the kernel. It uses process-based virtualization to 



 

 

40 

run switches and hosts on the kernel. Large networks1 with different topologies can be 

emulated and tested. In fact, the code developed in Mininet emulation can be moved 

to a real production network.  

 

Creating a network in Mininet is as easy of entering the command mn to have a 

network with one switch, two hosts and a NOX controller. The command is shown in 

Appendix D. NOX is the default controller of Mininet.  

 

4.2 Packet Generation  
 

Packet generation is done by Scapy [40]. It is a very powerful tool for packet 

generating, scanning, sniffing, attacking and packet forging. Scapy is used here to 

generate UDP packets and spoof the source IP address of the packets.  

 

Python programming language is used in POX. The code for generating random 

source   IP  addresses  and  host   IP  addresses  is   in  Python.  The  function  “randrange”  is  

used   which   is   inheriting   the   function   “random”.   This function produces a uniform 

random float in the range [0.0, 1.0). The generated float has 53-bit precision and has a 

period of 1199372 �  [41]. This number shows a long period of random number 

generation which will result in generating random numbers with uniform distribution. 

These numbers are joined together to form spoofed source IP addresses. Two other 

parameters that we set in Scapy are: type of packets and interval of packet generation. 

UDP packets are used for both attack and normal traffic. The interval was set to suit 

the test case. For instance, for an attack with 25% rate, normal traffic interval is 0.1 

seconds and attack traffic is 0.025. This gave us windows with 25% of packets 

destined to one host. The code for generating normal and attack is shown in Appendix 

B and C respectively. 

   

4.3 Network Setup  
 

The experiment was done on a Lenovo laptop with a dual core processor, 2.7 GHz of 

power and up to 3.2 GHz in turbo mode, 4GB of ram, and 10/100/100/1000Mbitps 
                                                        
1 Mininet claims running up to 4096 hosts on a single OS. 



 

 

41 

network interface. The operating system is Linux Ubuntu 13.04 and Mininet version 

2.0.0 was run native on Linux. Mininet 2.0.0 supports Openflow version 1.0. 

 

Using Mininet, a tree-type network of depth two with nine switches and 64 hosts was 

created. Figure 4.1 shows the network. Open Virtual Switch (OVS) [42] was used for 

network switches. OVS is a software switch that runs both on hardware and software. 

For this work, there is no difference between Openflow and OVS switch. Both do the 

same job and both are supported in Mininet. In Figure 4.1, all switches refers to 

Openflow enabled switches. The L3_learning module of POX was used for the 

controller.  

 

 

 
   Figure 4.1 Experiment Network with 9 switches and 64 hosts 

 

Next, the simulations and calculations that are run for setting a threshold will be 

discussed. 

 
 
 
 



 

 

42 

4.4 Choosing a Threshold  
 

After setting all the parameters for a full network, a threshold is needed to detect 

DDoS attacks. The detection mechanism in our solution dictates that if the entropy is 

lower than the threshold, and it persists for five windows in a row, an attack is in 

progress.  

 

To find the range for an optimal threshold, we ran a series of experiments to see the 

effect of an attack on the entropy. The experiments cover an attack to one host and a 

subnet of four hosts. To compare different rates of incoming packets, we controlled 

the rate of normal and attack traffic to increase and decrease the intensity of DDoS on 

the controller. Equation 4.1 is used for showing the rate R of incoming attack packets 

to normal traffic attacks. Where Pa  and Pn are the number of attack packets and 

normal traffic packets respectively.   

 

                                            %100u 
n

a

P
PR                                (4.1) 

We ran a 25% rate attack on one host for 25 times to find a suitable threshold. This 

threshold is the highest entropy of all cases so it will enable the controller to detect 

any attack with packets occupying 25% of the incoming traffic or more. We call it 

25% rate attack. Table 4.1 shows the threshold and compares it to normal traffic 

values. The threshold is set to 1.31. To get this value the following was done: 

 

a) Calculated the lowest value that normal traffic entropy can reach. This is equal 

to normal traffic mean entropy minus confidence interval, 1.4665. 

b) Calculate the highest value that attack traffic entropy can reach. This is equal 

to attack traffic mean entropy plus confidence interval, 1.3047. 

c) Find the difference of the two, 0.1618. We have a drop of 11%. 

 

Even though the above calculation shows 13.047 could be the threshold, after 25 

times running the simulation, we found that 1.31 has much less false negatives. 

Hence, a threshold of 1.31 will give us a clear cut for detecting any DDoS attack that 

will occupy 25% or more of the incoming traffic. It should be noted that the 



 

 

43 

confidence intervals are very small, 0.0035 and 0.0047, and as a result, they do not 

appear on the graphs.  

 
                            Table 4.1 Threshold value calculation 

 Normal Traffic 25% Rate Attack 
Mean 1.47 1.3 
Standard Deviation 0.009 0.012 
Confidence interval ±0.0035 ±0.0047 
Confidence intvl Max 1.4735 1.3047 
Confidence intvl Min 1.4665 1.2953 
Difference of Normal traffic min 
and Attack traffic max. 

0.1618 

Threshold 1.31 
 

In the previous chapter, we chose five consecutive periods of lower than threshold 

detection for declaring an attack. There are two reasons for choosing this number: 

i) If a switch goes down temporarily or a link is broken, the network admin 

will have time to notice that reducing he false positive. 

ii) Probability of having five consecutive windows lower than threshold 

during normal traffic is very low compared to lower numbers.  

 

In the end, all of these values can be changed to fit the requirements of the network 

design. Even when the network is running live, these values can be modified and this 

is one of the advantages of central control in SDN. Next we will look at different test 

cases that were performed for evaluating our detection method. 

 

4.5 Test Cases  
 

The experiment covers five cases of attacks and a normal traffic run. Three different 

intensity attacks are run on one host and two different intensity attacks on four hosts 

belonging to the same switch and subnet. Normal traffic is run on all switches with 

randomly generated packets going to all hosts. Attack traffic is run from one host. 

Attacks were run manullay (i.e. a script was run after one third of the length of our 

simulation. 

 

 



 

 

44 

In Mininet, IP addresses for all hosts are assigned incrementally from 10.0.0.1 

onward. For one host attack, we randomly chose a host in a switch to send attack 

packets to another host while all other hosts and switches are running normal traffic. 

In the case of four hosts being attacked, a random host will send attack packets while 

the rest of the network is running normal traffic. Table 4.2 shows the attack traffic 

profile. All the traffic packets will be UDP, destination port is 80 and type of attack is 

DDoS. In Openflow, by default, only the packet header is sent to the controller so no 

payload was added to the generated packets.  

 
                            Table 4.2 Attack traffic profile 

Protocol Port Payload Type of Attack 

UDP 

(Protocol 17) 

80 None DDoS 

 

The three test cases on a single host have rates of 25%, 50% and 75%. In all tests, two 

Scapy programs are running. One is generating normal traffic and the other generating 

the attack that sends packets faster than normal traffic. This scheme resulted in having 

from 9 to 14 packets out of 50 for 25% rate attack with the same destination IP 

address. This was not by design. Often, there were small glitches in Mininet. For the 

other two cases, the rates are changed to increase the number of attack packets. The 

50% rate reached up 26 out of 50 and 75% up to 39 packets out of 50.  

 

Subnet attack covered rates 50% and 75%. The 25% is not used in subnet attack. 

Since 25% of attack packets for four hosts will be average of 12 packets. When 

divided among four hosts, each host gets three packets. This rate is considered normal 

and does not pose a real threat to the controller. 

 

We used a subnet of four hosts to test an attack on a group of hosts. In 50% rate 

attack, each host received 5 to 7 packets and in 75% rate the range was 9 to 10 

packets per host. Although this variation in attack packets was unintended, it widened 

the percentage of attack traffic in the test. For instance, the 25% rate attack on a single 

host, the attack packets are 9 to 14, which translates to 18% to 28%.  

 

 



 

 

45 

In reality, DDoS attacks reach a much higher intensity. Attacks, often, they generate a 

traffic that is few times higher than the normal traffic. Figure 4.2 shows an attack that 

reaches 250 packets per second while normal traffic is only 50 packets per second. If 

this attack continues without mitigation in a controller, all its resources will be bound 

in processing attack packets.  

 

 
                    Figure 4.2 Sudden increase of traffic in DDoS 

4.5.1 Attack on One Host  
 

In this section, we examine the results of an attack against one host. Each graph is a 

result of 15 runs with 4000 packets per test. Each point on the horizontal axis shows a 

window of 50 packets and the vertical axis shows the entropy for that window. The 

graph’s data are the mean values over 15 runs.  

 

Figure 4.3 shows change of entropy in 25% rate attack. In all the graphs, the blue line 

is the normal traffic. The red line shows the transition from normal traffic to attack 

and back to normal traffic. In Figure 4.3, a distinct difference between the normal and 

attack traffic entropy can be seen. In the graph, the first six entropies are well below 

our threshold of 1.31. In table 4.1, the lowest point of confidence interval for normal 

traffic was 1.4665 and the highest point of attack entropy was 13.047. The difference 

of these two values, 0.1618, shows 11% drop in entropy which is 34 bigger than the 

25% attack traffic confidence interval, 0.0047. This result shows that this method can, 

easily, detect any attack occupying 25% or more of the incoming traffic when it is 

destined for one host. Since 25% rate was run 25 times, we computed the success rate 

of this method based on this 25 runs of the simulation. Within these runs, only one 

DDoS Attack 

Packets 

Seconds 



 

 

46 

false negative was detected where an attack was in progress but was not detected by 

the controller. This shows a success rate of 96% in detecting DDoS attacks within the 

first 250 incoming packets. For all other cases, the success rate is 100% and no attack 

passed unnoticed.  

 

To look at more concentrated attacks, two higher rate tests were launched on one host. 

Figure 4.4 shows an attack with 50% rate and 4.5 shows a 75% rate attack on a single 

host. Both simulations are compared to normal traffic average to show the difference 

of entropy in both conditions. 

 

In 50% and 75% rate attacks, the window of attack is deeper and narrower showing a 

bigger drop in entropy. In one host attack, 500 packets are sent as attack traffic. When 

the rate of attack increases and the number of generated attack packets is fixed, the 

percentage of attack packets in the window increases. This will results in a deeper and 

narrower graph of attack.  In the 75% case, the drop was too narrow so packets were 

increased to 1000 packets to have a better view of the entropy drop. 

 

 
                  Figure 4.3 25% rate attack on one host 

                   

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

En
tr

op
y 

50-packet window 

25% Rate Attack One Host 

25% Rate Attack One Host Normal Traffic



 

 

47 

 
                                                             Figure 4.4 50% rate attack on one host 

 

 
                      Figure 4.5 75% rate attack on one host 

 

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

En
tr

op
y 

50-packet window 

50% Rate Attack One Host 

50% Rate Attack One Host Normal Traffic

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

En
tr

op
y 

50-packet window 

75% Rate Attack One Host 

75% Rate Attack One Host Normal Traffic



 

 

48 

In Chapter 2, we saw that, instead of a single host, a subnet mask might be infiltrated 

and attacked. In the next section, we will look at a situation where a subnet of hosts is 

attacked.  

 

4.5.2 Attack on a Subnet 
 

In this section, four hosts of the same subnet are attacked to examine the effectiveness 

of entropy in detecting such attacks on the controller. Since the baseline for detection 

was 25% rate on one host, the threshold was kept the same. In addition, 15 runs of 

attack on a subnet with 50% rate proved to have entropy lower than the threshold.  

Figure 4.6 has a drop in entropy that is well below the 1.31 threshold of the 25% but 

higher than 50% rate on one host. Table 4.3 shows the difference of entropy between 

the attack and the threshold. The confidence interval of 25% rate was 0.0047 and the 

closest entropy to threshold is the 25% rate with a difference of 0.01. This value is 

twice that of confidence interval. The end results will show the accuracy of our 

choice.   

 

 
                  Figure 4.6 50% rate attack on four hosts 

 

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

En
tr

op
y 

50-packet window 

50% Rate Attack Four Hosts 

50% Rate Attack on 4 Hosts Normal Traffic



 

 

49 

 
                        Figure 4.7 75% rate attack on four hosts 

 
Figure 4.7 shows 75% rate attack on four hosts.  We can see a sharp drop in entropy 

when a large number of packets are flowing to the same subnet. The confidence 

interval of 75% rate attack on a single host and 75% rate on a subnet show the highest 

confidence interval. If we look at Figure 4.8 and 4.9, we can see how 75% rate attacks 

have a wedge-shaped line when the attack starts and when it reaches the end. This is 

the result of gradual increase and decrease of  the  attack  packets’  share  in  the  window.    

 
                    Table 4.3 Entropies of test cases  

Traffic Type Mean Entropy Threshold – attack entropy Confidence 
interval 

25% rate on host 1.3 0.01 ±0.0035 
50% rate on host 1.06 0.24 ±0.0099 
75% rate on host 0.56 0.74 ±0.03 
50% rate on 4 hosts 1.2 0.1 ±0.0028 
75% rate on 4 hosts 0.98 0.32 ±0.02 
 

When the attack traffic reaches 100%, the controller will be fully bound in processing 

malicious packets that are the results of a DDoS attack (due to hardware limitation, 

we did not test the point of failure of the controller).  

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

En
tr

op
y 

50-packet window 

75% Rate Attack Four Hosts 

75% Rate Attack 4 Hosts Normal Traffic



 

 

 
 

 

When we look at the number of packets that are sent in an attack, they are varying 

from seven to 39 packets in a window. Although seven packets in a window of 50 

seem small, if the values in Table 4.4 are compared to the values of average incoming 

packet per host, we see the number is in fact high. If we take the example of 50% rate 

attack on four hosts, each host will receive an average of (6.25) packet per window in 



 

 

51 

an attack situation. The normal rate for a single host is (1.28) packet per window. This 

shows an increase of, nearly, 5 times in the rate of incoming packets. If we take the 

two examples of 75% rate attack on four hosts and 75% rate attack on one host, the 

rate of attack packets is (7.3) times and (30) times respectively. Considering the fact 

that in the four hosts’ case each host is receiving (7.3) times the average traffic, the 

collective rate is a considerable increase. This shows that the methodology of our test 

is correct and consistent with real-world attack situation where attack traffic has much 

higher rates than normal incoming traffic.    

 

In this section, we proved the effectiveness of this method in detecting DDoS attacks 

with an accuracy of 96%. Next, we will examine the effect of our method on the 

resources of the controller. 

 
                              Table 4.4 Number of incoming packets per host in each test case 

Test case Average incoming packets per host 

Normal traffic  1.28 

25% Rate one host 12.5 

50% Rate one host 25 

75% Rate one host 37.5 

50% Rate four hosts 6.25 

75% Rate four hosts 9.375 

 

4.6 Effects of the Added Functions on Resource Usage 
 
In chapter 3, we showed that two functions were added to the controller. This was 

done with the intention of designing a solution that has minimal effect on the 

controller in terms of code addition and, in part, resource usage. 

 

To examine the effect of our solution on the controllers CPU, we killed all the 

unnecessary process on our Linux laptop (running Ubuntu 13.04) except for the 

simulation.  We  also  disabled  networking  and  ran  the  simulation  on  Linux’s  loopback.   

 

 



52 

We ran two simulations: 

i) A 25% rate attack on POX controller without our solution.

ii) A 25% rate attack on POX controller with our solution.

In both cases we left system monitoring application of Linux running. For both 

simulations, the attack lasted 40 seconds and normal traffic ran for 240 seconds. We 

captured the screen for both cases. The screen resolution is not high and the captured 

screen is not better so two black lines were added showing the interval of 60% to 80% 

on the left in Figure 4.10 and 4.11. In both figures, there is no visible difference 

between the two graphs in normal traffic except for few small impulses at both ends. 

In Figure 4.10, during the attack period, we can see a sharper increase and drop 

compared to Figure 4.11. The blue lines on both sides of the attack period show the 

difference. However, during the attack, both graphs reach a maximum of 78%. This is 

a very minor difference and can be considered a minimal use of resources. This shows 

that the solution is, in fact, transparent and lightweight. 

 Figure 4.10 CPU usage with no DDoS detection 



53 

  Figure 4.11 CPU usage with DDoS detection 

4.7 Summary of the Results 

In 25 runs of the 25% rate, we had only one false negative. In that case, first, eight 

then, nine consecutive windows passed with higher than threshold entropy while 

attack was happening. This shows a 96% accuracy detecting DDoS in SDN controller. 

If the threshold is set at a higher rate, 35% rate attack for instance, the accuracy is 

100%. 

In section 3.5, we compared some methods of DDoS detection in SDN. In [28], 

Network Intrusion Detection Systems(NIDS) are used in SDN architecture and the 

controller was used to find the shortest path for sending traffic into NIDS. In [29], 

SNORT, which is common software for DDoS detection in the cloud, is used 

alongside the controller to detect DDoS. These two methods do not report a success 

rate in detection. It seems that the viability of the method is being shown in these two 

papers. In [32], an event processing module was used which examines all incoming 

traffic to controllers to detect DDoS. This method was not tested. To validate our 

results, they should be compared to a solution that is implemented in SDN.  The 

solution in [25] uses Self Organizing Maps (SOM) machine learning method to detect 

attacks in SDN. This  method’s  results  show 98.6% and 99.11% success in detecting 

DDoS with Slef Organizing Maps. It applies the same principles that are used for non-

SDN networks, which is detecting an attack against the network or a host in the 

network without any specific measures to protect the controller. It runs a software in 

the network that uses several calculations with large matrices for learning the 



 

 

54 

behavior of the network. The entropy detection that is used in this research does all 

the functionality of the above method without any of the complex measures used in it. 

Perhaps, the biggest difference between the two is the fact that SOM applies non-

SDN solution to SDN network while our method takes a non-SDN solution and tailors 

to fit SDN networks requirements. 

 

There are major advantages to our method that do not exist in SOM solution; 

a. Directly protects the controller against DDoS 

b. Specifically designed for SDN  

c. High accuracy of 96% 

d. Low complexity with two functions added 

e. Minimal resource use  

 

These can be compared to a method that has complex software, must be trained for 

hours, runs complex matrix computations for detection and, inevitably, uses a lot of 

resources in the network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

55 

Chapter 5 

Conclusion and Future Work 
5.1 Conclusion 
 

 
Protecting the operating system of SDN (i.e. the controller) by detecting DDoS 

attacks was the center of this research. The challenge in detecting any threats to the 

controller is early detection. Although the   term   “early” can be used loosely in 

detecting an attack, we quantified the early detection to the first 250 packets of traffic 

as minimum and 500 packets maximum. 

   

This solution is not only efficient in detection, it has minimal code addition to the 

controller program and does not increase CPU load in either normal or attack 

condition. 

 

There are different methods for detecting attacks and each method is used differently. 

In this research, we focused on a solution that works particularly well for SDN, based 

on its specifications, points of strength and limitations. We made use of the fact that 

SDN specification dictates the forwarding of new packets to the controller. We took 

into account the abilities of the controller and its broad view of the whole network and 

used that for adding entropy statistics collection. Finally, understanding the 

importance of keeping the controller connected to the network at all times, we came 

up with a solution to detect any threat at its very beginning. Entropy has been used in 

DDoS detection in non-SDN network but, to the best of our knowledge, it has not 

been used in SDN and this is the first solution of its kind in SDN.    

 

By applying entropy as a detection method, we were able to detect attacks on one host 

or a subnet of hosts in a network.  In the case of one host, our detection method 

proved to be able to, successfully, catch drops in entropy when attack packets are as 

low as 25% of the incoming traffic to the controller. For the subnet attack, our 

method, successfully, detected the attack when its packets were as low as 50% of 

coming traffic to the controller. The success rate this method is 96% when using a 

threshold of 25% rate attack packets per total traffic. The closest method in non-SDN 



 

 

56 

networks can detect an attack when 75% to 100% of traffic is DDoS. We believe that 

this is an effective method in addressing the detection of DDoS in SDN with accuracy 

and efficiency.  

 

One contribution of this research is covering controller security in SDN. There seems 

to be a lack of research focusing on this specific part of SDN. The topic of SDN is 

new and the reason might be limited deployment of this structure as a production 

network. The contributions of this research are: 

x Showed how DDoS attack can overwhelm the controller in SDN architecture. 

x Proposed a lightweight and fast DDoS detection mechanism based on entropy, 

to protect the controller. 

x Implement the proposed mechanism using Mininet and POX controller. 

x Showed the effectiveness of the solution through extensive simulations. 

 

5.2 Future work 
 

One limitation that our method has is the detection of attacks when the entire network 

is being targeted by DDoS. When malicious packets are targeting every host, entropy 

might not change by a large margin. Detecting such attacks will be an addition to this 

research.  

 

Having addressed the detection in one controller network, two more tasks to be done 

are:  

i) Detection of attack in a multi-controller SDN structure  

ii) Mitigation of the attack.  

 

In SDN, networks are connected to controllers and, several controllers might be 

connected to each other. Detecting an attack in one of them could show the source of 

the attack and make discovery of the source much easier. This method requires an 

inter-controller communication that sends the threat alert to all the controllers. Adding 

this communication process to SDN will be an extension to the current work and a 

topic for future work. 

 



 

 

57 

Mitigation of DDoS in SDN is the next future work for this research. The first step of 

mitigation will be detection of the source or sources of the attack. Adding more 

statistics collection to the controller will enable it to monitor the flow rate at the 

switch level where attack flows are directed to the controller. Then, more elaborate 

techniques can be used to pinpoint the malicious hosts. This is a very interesting 

future work that can be a baseline for any detection scheme in SDN structure.   



 

 

58 

Bibliography 
 
[1] Open Networking Foundation. (2014, Jan.) ONF. [Online]. 

https://www.opennetworking.org/ 
 

[2] T. Anderson, H. Balakrishnan, G. Parulkar, J. Rexford, S. Shenker, J. Turner N. 
McKeown, "OpenFlow: enabling innovation in campus networks," ACM 
SIGCOMM, vol. 38, no. 2, pp. 69-74, April 2008. 
 

[3] SDN Central. (2013, Oct.) sdncentral. [Online]. 
http://www.sdncentral.com/announced-sdn-products/ 
 

[4] M. Masikos, O. Zouraraki C. Patrikakis. (2004, December) CISCO. [Online]. 
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_7-
4/dos_attacks.html 
 

[5] A. Mitrocotsa C. Douligeris, "DDoS Attack and Defence Mechanism: A 
Classification," in Singnal processing and information tecnology in 3rd IEEE 
International Symposium, Apr 2003, pp. 190-193. 
 

[6] Prolexic. (2013, December) DoS and DDoS attack reports, trends and statistics. 
[Online]. http://www.prolexic.com/knowledge-center-dos-and-ddos-attack-
reports.html 
 

[8] P. Reiher J. Mirkovic, "A Taxonomy of DDoS Attack and DDoS Defense 
Mechanisms ," SIGCOM, vol. 34, no. 2, pp. 39-53, April 2004. 
 

[7] Google, Arbor. (2013, Oct) Digital Attack Map. [Online]. 
http://www.digitalattackmap.com/#anim=1&color=0&country=ALL&time=1600
3&view=map 
 

[9] NSFOCUS. (2013, Nov) NSFOCUS. [Online]. 
http://en.nsfocus.com/SecurityReport/2013%20NSFOCUS%20Mid-
Year%20DDoS%20Threat%20Report.pdf 
 

[10] C. Ji M. Thottan, "Anomaly Detection in IP Networks," IEEE Transaction on 
Signal Processing, vol. 51, no. 8, pp. 2291-2204, Aug 2003. 
 

[11] D. Schnackenberg, R. Balupari, D, Kindred L. Feinstein, "Statistical Approaches 
to DDoS Attack Detection and Response," in DARPA Information Survivability 
Conference and Expedition, vol. 2003, Apr. 
 

[12] Z. Qin, L. Ou, J. Liu, A. X. Liu J. Zhang, "An Advanced Entropy-Based DDoS 
Detection Scheme," in International Conference on Information, Networking and 
Automation, 2010, pp. 67-71. 

https://www.opennetworking.org/
http://www.sdncentral.com/announced-sdn-products/
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_7-4/dos_attacks.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_7-4/dos_attacks.html
http://www.prolexic.com/knowledge-center-dos-and-ddos-attack-reports.html
http://www.prolexic.com/knowledge-center-dos-and-ddos-attack-reports.html
http://www.digitalattackmap.com/#anim=1&color=0&country=ALL&time=16003&view=map
http://www.digitalattackmap.com/#anim=1&color=0&country=ALL&time=16003&view=map
http://en.nsfocus.com/SecurityReport/2013%20NSFOCUS%20Mid-Year%20DDoS%20Threat%20Report.pdf
http://en.nsfocus.com/SecurityReport/2013%20NSFOCUS%20Mid-Year%20DDoS%20Threat%20Report.pdf


 

 

59 

[13] I. Ra G. No, "An efficient and reliable DDoS attack detection using fast entropy 
computation method," in International Symposium on Communication and 
Information technology, 2009, pp. 1223-1228. 
 

[14] Y. Chen X. Ma, "DDoS Detection Method Based on Chaos Analysis of Network 
Traffic Entropy," IEEE Communications Letters, vol. PP, no. 99, pp. 1-4, 2013. 
 

[15] F. M. Ham, Principles of neurocomputing for Science and Engineering.: 
McGraw Hill, 1991. 
 

[16] D. O,Brien S. Seufert, "Machine Learning for Automatic Defence against 
Distributed Denial of Service Attack," in ICC, 2007, pp. 1217-1222. 
 

 
[18] 

IBM. (2014, Feb) IBM SPSS Modeler. [Online]. 
http://pic.dhe.ibm.com/infocenter/spssmodl/v15r0m0/index.jsp?topic=%2Fcom.i
bm.spss.modeler.help%2Fidh_neuralnet_network.htm 
 

[17] G. Serpen M. Sabhnani. (2014, Jan) BSTU Laboratory of Artificial Neural 
Networks. [Online]. http://neuro.bstu.by/ai/To-dom/My_research/Papers-0/For-
research/D-mining/Anomaly-D/KDD-cup-99/mlmta03.pdf 
 
 

[19] S. Oechsner, D. Schlosser, R. Pries, S. Goll, P. Tran-Gia M. Jarschel, "Modeling 
and Performance Evaluation of an OpenFlow Architecture," in 23rd ITC , 2011. 
 

[20] A. L. Cox, T. S. E. Ng Z. Cai. CAI, Z., "Maestro: A system for 
scalable OpenFlow control", Tech. Rep. TR10-11, Rice University- Department of 
Computer Science, December 2010. 
 

[21] E. Jacob, D. Sanchez, Y. Demchenko J. Matias, "An Openflow Based Network 
Virtualization Framework for the Cloud," in IEEE Third International 
Conference on Cloud Computing Technology , 2011, pp. 672-678. 
 

[22] B. Martini, M. Gharbaoui, P. Castoldi D. Adami, "Effective Resource Control 
Strategies using Openflow in Cloud Data center," in International Symposium on 
Integrated Network Management, 2013, pp. 568-574. 
 

[23] A. Anjum, R. Hill, N. Bessis, S.L. Kiani C. Baker, "Improving Cloud Datacenter 
Scalability, Agility and Performance using Openflow," in 4th International 
Conference on Intelligent Networking and Collaborative Systems, 2012, pp. 20-
27. 
 

[24] R. Canonico, M. Brunner, P. Hasselmeyer, F. Mir R. Bifulco, "A paractical 
experience in designing an OpenFlow controller," European Workshop on SDN , 
pp. 61-66, Oct 2012. 
 

[25] E. Mota, A. Passito R. Braga, "Lightwight DDoS flooding attack detection using 

http://pic.dhe.ibm.com/infocenter/spssmodl/v15r0m0/index.jsp?topic=%2Fcom.ibm.spss.modeler.help%2Fidh_neuralnet_network.htm
http://pic.dhe.ibm.com/infocenter/spssmodl/v15r0m0/index.jsp?topic=%2Fcom.ibm.spss.modeler.help%2Fidh_neuralnet_network.htm
http://neuro.bstu.by/ai/To-dom/My_research/Papers-0/For-research/D-mining/Anomaly-D/KDD-cup-99/mlmta03.pdf
http://neuro.bstu.by/ai/To-dom/My_research/Papers-0/For-research/D-mining/Anomaly-D/KDD-cup-99/mlmta03.pdf


 

 

60 

NOX/Openflow," in IEEE 35th conference on Local Computer Networks, 2010, 
pp. 408-415. 
 

[26] S. Ostermann, B. Tjaden M. Ramadas, "Detecting anamalous network traffic 
with self-organizing maps," in Recent Advances in Intrusion Detection, 2003, pp. 
36-54. 
 

[28] G. Gu S. Shin, "CloudWatcher: Network Security Monitoring Using OpenFlow 
in Dynamic Cloud Networks (or: How to provide security monitoring as a 
service in clouds?)," in 20th IEEE International conference on Network 
Protocols , 2012, pp. 1-6. 
 

[27] T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeon, S. Shenker N. Gude. 
(2014, Jan) acm sigcomm. [Online]. http://www.sigcomm.org/node/2699 
 

[29] D. Huang, L. Xu, C. Chung T. Xing, "SnortFlow: A openflow-based Intrusion 
Prevention System in Cloud Environment," Second GENI Research nad 
Educational Experiment Workshop , pp. 89-92, 2013. 
 

[30] (2014, Jan) SourceFire Inc. [Online]. http://www.snort.org  
 

[31] R. Bennesby, E. Mota, A. Passito P. Fonseca, "A Replication Component for 
Resilient Openflow-based Networking," in Network Operations and 
Management Symposium, 2012, pp. 933-939. 
 

[32] W. Su, L. Wu, Y. Huang, S. Kuo Y. Hu, "Design of Event-Based Intrusion 
Detection System on OpenFlow Network," in IEEE International Conference on 
Dependable Systems and Networks (SDN), 2013, pp. 1-2. 
 

[33] T. Nakashima, T. Sueyoshi S. Oshima, "Early DoS/DDoS Detection Method 
using Short-term Statistics," in International Conference on Complex, Intelligent 
and Software Intensive Systems, 2010, pp. 168-173. 
 

[34] M. McCauley. (2013, Nov) NOXREPO. [Online]. http://www.noxrepo.org/ 
 

[35] T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, S. Shenker N. Gude, 
"NOX: Towards an Operating System for Networks," Computer Communication 
Review, vol. 38, no. 3, pp. 105-110, Jul 2008. 
 

[36] Big Switch Networks. (2014, Mar) Project Floodlight. [Online]. 
http://www.projectfloodlight.org/floodlight/ 
 

[38] Linux Foundation. (2014, Jan) Open Daylight. [Online]. 
http://www.opendaylight.org/ 
 

[37] D. Erickson. (2014, Jan) Openflow. [Online]. 
https://openflow.stanford.edu/display/Beacon/Home 

http://www.sigcomm.org/node/2699
http://www.noxrepo.org/
http://www.projectfloodlight.org/floodlight/
http://www.opendaylight.org/
https://openflow.stanford.edu/display/Beacon/Home


 

 

61 

 
[39] (2014, Feb) Mininet. [Online]. http://mininet.org/ 

 
[40] (2014, Feb) Scapy. [Online]. http://www.secdev.org/projects/scapy/ 
[41] Python Standar Library. (2014, Jan) Python Douments. [Online]. 

https://docs.python.org/2/library/random.html 
 

[42] (2014, Jan) Open Vswitch. [Online]. http://openvswitch.org/ 
 
 
 
  

http://mininet.org/
http://www.secdev.org/projects/scapy/
https://docs.python.org/2/library/random.html
http://openvswitch.org/


 

 

62 

Appendix  
 
Appendix  A:  Statistics  collection  and  entropy  computation  code 

 
 count = 0            # keeping count for a window size of 50 
    entDic = {}         # hash table for (IP, number of time it appeared in a window) 
    ipList = []           # list of IP addresses 
    dstEnt = []         # list of entropies 
     
     
    def statcolect(self, element): 
        # collecting stats (IP) 
        l = 0 
        self.count +=1 
        self.ipList.append(element) 
         
        if self.count == 50: 
 
            # we reached 50 fill hash table 
            for i in self.ipList: 
                l +=1 
                if i not in self.entDic: 
                    self.entDic[i] =0 
                self.entDic[i] +=1 
             
            # call entropy with the table, then clear all 
            self.entropy(self.entDic) 
            print self.entDic  # printing to see the values 
            self.entDic = {} 
            self.ipList = [] 
            l = 0 
            self.count = 0 
     
    def entropy (self, lists): 
        # this function computes entropy 
        l = 50 
        elist = [] 
        for p in lists.values(): 
 
            # calculating probability of each IP 
            c = p/l 
 
            # create a list of entropies 
            elist.append(-c * math.log10(c)) 
 
        print 'Entropy = ', sum(elist) # printing to see the entropy 
        self.dstEnt.append(sum(elist)) 
 
 



 

 

63 

        # have  we  reached  4000  packets… 
        if (len(self.dstEnt)) == 80: 
 
            print self.dstEnt # printing to see the full run 
            self.dstEnt = {} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

64 

Appendix  B:  Normal  traffic  generation  code 

 
#!/usr/bin/env python 
 
import sys 
import getopt 
import time 
from os import popen 
from scapy.all import sendp, IP, UDP, Ether, TCP 
from random import randrange 
 
def sourceIPgen(): 
      ”””   
      this function generates  random IP addresses 
       
       “”” 
    # these values are not valid for first octet of IP address 
    not_valid = [10,127,254,255,1,2,169,172,192] 
     
    first = randrange(1,256) 
 
    while first in not_valid: 
        first = randrange(1,256) 
 
    ip = ".".join([str(first),str(randrange(1,256)), 
                   str(randrange(1,256)),str(randrange(1,256))]) 
 
    return ip 
 
# host IPs start with 10.0.0. 
# the last value entered by user  
def gendest(start, end): 
      ”””   
      this function randomly generates IP  
      addresses of the hosts based on entered  
      start and end values  
       
       “”” 
 
    first = 10 
    second = 0; third = 0; 
    ip = ".".join([str(first),str(second), 
                   str(third),str(randrange(start,end))]) 
    return ip 
 
 
 
 
 
 



 

 

65 

 
 
 
 
#send the generated IPs 
def main(): 
“”” 
main method 
receives the last number of host IP addresses  
i.e. if packets are going to 10.0.0.1 to 10.0.0.8, 
user should enter 1 and 8 
then sends packets to those IP address 
””” 
     
    try: 
        opts, args = getopt.getopt(sys.argv[1:],'s:e:',['start=','end=']) 
    except getopt.GetoptError: 
        sys.exit(2) 
    for opt, arg in opts: 
        if opt =='-s': 
            start = int(arg) 
        elif opt =='-e': 
            end = int(arg) 
    if start == '': 
        sys.exit() 
    if end == '': 
        sys.exit() 
 
    # open interface eth0 to send packets 
    interface = popen('ifconfig | awk \'/eth0/ {print $1}\'').read() 
 
    # send normal traffic to the destination hosts 
    for i in xrange(1000): 
 
       # form the packet 
        packets = Ether()/IP(dst=gendest(start, end),src=sourceIPgen())/UDP(dport=80,sport=2) 
        print(repr(packets)) 
 
       # send packet with the defined interval  (seconds) 
        sendp( packets,iface=interface.rstrip(),inter=0.1) 
 
 
#main 
if __name__=="__main__": 
    main() 
 
 
 
 
 



 

 

66 

Appendix  C:  Attack  traffic  generation  code 

 
#!/usr/bin/env python 
import sys 
import time 
from os import popen 
from scapy.all import sendp, IP, UDP, Ether, TCP 
from random import randrange 
 
def sourceIPgen(): 
    ”””   
      this function generates  random IP addresses 
       
       “”” 
    # these values are not valid for first octet of IP address 
    not_valid = [10,127,254,255,1,2,169,172,192] 
     
    first = randrange(1,256) 
 
    while first in not_valid: 
        first = randrange(1,256) 
        print first 
    ip = ".".join([str(first),str(randrange(1,256)), 
                   str(randrange(1,256)),str(randrange(1,256))]) 
    print ip 
    return ip 
 
#send the generated IPs 
def main(): 
     
    #getting the ip address to send attack packets 
    dstIP = sys.argv[1:] 
    print dstIP 
    src_port = 80 
    dst_port = 1 
 
    # open interface eth0 to send packets 
    interface = popen('ifconfig | awk \'/eth0/ {print $1}\'').read() 
 
    for i in xrange(0,500): 
        # form the packet 
        packets = Ether()/IP(dst=dstIP,src=sourceIPgen())/UDP(dport=dst_port,sport=src_port) 
        print(repr(packets)) 
 
       # send packet with the defined interval (seconds) 
        sendp( packets,iface=interface.rstrip(),inter=0.025) 
 
#main 
if __name__=="__main__": 
    main() 



 

 

67 

Appendix  D:  Starting  Mininet 

#Starting Mininet 
sduo mn  --switch ovsk --topo tree,depth=2,fanout=8 --controller=remote, 
ip=127.0.0.1,port=6633 
 
# sudo mn: strting mininet 
 
# --switch ovsk: starting open virtual switch 
 
# --topo tree,depth=2,fanout=8: creating a tree network with depth of 2 and eight hosts 
from each switch 
 
# --controller remote, ip=127.0.0.1,port=6633: telling the network to look for a controller 
with the given IP address and port (running on loopback) 
 
  


